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ABSTRACT

Motivation: Transmembrane �-barrel (TMB) proteins are embedded

in the outer membranes of mitochondria, Gram-negative bacteria

and chloroplasts. These proteins perform critical functions, including

active ion-transport and passive nutrient intake. Therefore, there is a

need for accurate prediction of secondary and tertiary structure of

TMB proteins. Traditional homology modeling methods, however, fail

on most TMB proteins since very few non-homologous TMB struc-

tures have been determined. Yet, because TMB structures conform

to specific construction rules that restrict the conformational space

drastically, it should be possible for methods that do not depend on

target-template homology to be applied successfully.

Results: We develop a suite (TMBpro) of specialized predictors for

predicting secondary structure (TMBpro-SS), �-contacts (TMBpro-

CON) and tertiary structure (TMBpro-3D) of transmembrane �-barrel

proteins. We compare our results to the recent state-of-the-art

predictors transFold and PRED-TMBB using their respective bench-

mark datasets, and leave-one-out cross-validation. Using the

transFold dataset TMBpro predicts secondary structure with per-

residue accuracy (Q2) of 77.8%, a correlation coefficient of 0.54, and

TMBpro predicts �-contacts with precision of 0.65 and recall of 0.67.

Using the PRED-TMBB dataset, TMBpro predicts secondary

structure with Q2 of 88.3% and a correlation coefficient of 0.75. All

of these performance results exceed previously published results by

4% or more. Working with the PRED-TMBB dataset, TMBpro pre-

dicts the tertiary structure of transmembrane segments with RMSD

56.0 Å for 9 of 14 proteins. For 6 of 14 predictions, the RMSD is

55.0 Å, with a GDT_TS score greater than 60.0.
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Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Transmembrane �-barrel (TMB) proteins are an important class

of proteins embedded in the outer membrane of Gram-negative

bacteria, mitochondria and chloroplasts (Schulz, 2000; Tamm

et al., 2004; Wallin and Heijne, 1998). It is estimated that

genomic databases currently contain thousands of TMB

proteins (Wimley, 2002, 2003), and ongoing large-scale sequen-

cing efforts promise to produce many more (Yooseph et al.,

2007). These proteins carry out diverse biochemical functions

including active ion transport, passive nutrient intake and

defense against attack proteins (Koebnik et al., 2000; Schulz,

2000). Thus, elucidating the structure and function of TMB

proteins has immediate medical relevance, as bacterial mem-

brane proteins are potential targets of antimicrobial drugs and

vaccines (Jackups and Liang, 2005). Crystallizing transmem-

brane (TM) proteins is especially challenging; thus, predicting

the structure of TMB proteins from sequence is an interesting

and important task (Casadio et al., 2003; Oberai et al., 2006).

Currently, several methods try to discriminate TMB proteins

from globular and TM �-helical proteins, or to predict their

1-dimensional (1D) secondary structure features (i.e. the posi-

tions of TM�-strands and the types of loops) (Bagos et al., 2004a,
b, 2005; Bigelow and Rost, 2006; Bigelow et al., 2004; Diederichs

et al., 1998; Fariselli et al., 2005; Garrow et al., 2005; Gromiha

and Suwa, 2005;Gromiha et al., 1997, 2004, 2005; Jacoboni et al.,

2001; Liu et al., 2003; Martelli et al., 2002; Natt et al., 2004; Park

et al., 2005; Paul and Rosenbusch, 1985; Waldispühl et al.,

2006b; Welte et al., 1991; Zhai and Saier, 2002).
The 1D structure predictions are very useful for constructing

a coarse topology of TMB structure (Tamm et al., 2001).

However, they do not provide enough information to construct

a low-resolution tertiary structure for a TMB protein (Jackups

and Liang, 2005). In addition, traditional homology modeling

of TMB proteins is hindered by the lack of sequence similarity

between the small number of TMB proteins with known

structures and the thousands of TMB proteins without known

structures (Jacoboni et al., 2001; Schulz, 2000).

TMB proteins adopt a common �-barrel fold and obey

specific construction rules, as outlined in Schulz (2000). For

instance, known TMB proteins consist of an even number of

membrane spanning �-strands with an anti-parallel �-meander

topology. Two recently published methods take advantage of

these construction rules to predict the inter-strand �-residue
pairings of TMB proteins (Jackups and Liang, 2005;

Waldispühl et al., 2006a). These �-contact predictions provide
strong constraints for building tertiary structure models of

TMB proteins as in the reconstruction of globular protein

structures using contact constraints (Skolnick et al., 1997).*To whom correspondence should be addressed.
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Since there are fewer than 20 non-redundant (Waldispühl
et al., 2006a) TMB proteins with known structures in the Protein
Data Bank (PDB) (Berman et al., 2000) and membrane protein

databases (Ikeda et al., 2003; Lomize et al., 2006), it is chal-
lenging to develop robust knowledge-based methods to predict
inter-strand pairings in TMB proteins. To overcome the small

dataset problem, the method transFOLD (Waldispühl et al.,
2006a) uses pair-wise inter-strand residue statistical potentials
derived from globular proteins to predict the inter-strand residue

pairings of TMB proteins with moderate accuracy.
In this article, we present a three-stage pipeline to predict the

tertiary structure of TMB proteins. First, we predict the two-
class secondary structure with TMBpro-SS. Second, we predict
�-residue contacts using TMBpro-CON (Baldi and Pollastri,

2003; Cheng and Baldi, 2005; Cheng et al., 2006a; Pollastri and
Baldi, 2002). Finally, we use these feature predictions, TMB
templates, and construction rules to predict tertiary structure

with TMBpro-3D.

2 DATA

2.1 Benchmark sets

In this work ,we use two sets of TMB proteins described in the
literature. The first is the dataset described in Waldispühl et al.

(2006a), which consists of 14 redundancy-reduced TMB pro-
teins. The authors divide this set into two main subsets: non-
water-filled (NWF) and water-filled (WF). NWF consists of

(PDB code) 1QJP, 1QJ8, 1THQ, 1P4T, 1I78, 1K24 and 1QD6.
WF consists of 1A0S, 1AF6, 1PRN, 2OMF, 1E54, 1TLY and
2POR. In our work, we treat all 14 proteins as a single set. The

secondary structure assignments used for this set come from the
DSSP program (Kabsch and Sander, 1983), which we condense
to two classes : strand (�) and non-strand (�). These single

character designations are used throughout this work when
dealing with two-class representation. Following the work

described in Waldispühl et al. (2006a), the group published a
web-server for predicting features of TMB proteins called
transFold (Waldispühl et al., 2006b). Throughout this work, we

refer to this set as SetTransfold. We compare our secondary
structure and �-contact prediction results to transFold using
this set.

The second set is described in Bagos et al. (2004a) and also
contains 14 redundancy-reduced TMBs. Nine of them overlap
with SetTransfold: 1QJP, 1QJ8, 1I78, 1K24, 1A0S, 1PRN,

2OMF, 1E54 and 2POR. The five proteins that differ are:
1QD5, 2MPR, 1FEP, 2KMO and 2FCP. Rather than using the
DSSP assignments, the authors manually designated TM (�)
and non-TM (�) segments for each protein in this set.
This approach was motivated by the observation that many

of the �-strands in TMB proteins extend significantly beyond
the membrane, and the authors sought to focus on the TM
regions. The authors have made their method available as the

web server PRED-TMBB (Bagos et al., 2004b). For the
remainder of this work, we refer to this set as SetPRED-
TMBB. We compare our results for secondary structure and

topology prediction to PRED-TMBB using this set. We also
use this set to evaluate our tertiary structure predictions.
The two datasets are created and treated independently in this

work in order tomake fair comparisons to previouswork. For all

of the proteins in SetTransFold, the secondary structure anno-
tation comes from DSSP. For all of the proteins in SetPRED-

TMBB the secondary structure, the annotation comes from
manual designation. For the nine proteins common to both

datasets, we keep both types of secondary structure annotation.
For example, protein 1QJ8 is present in each dataset, but with

different secondary structure annotation (DSSP in SetTransFold
and manual designation in SetPRED-TMBB). Results compar-

ing our work to transFold are based only on SetTransFold
annotations, and results comparing our work to PRED-TMBB

are based solely on SetPRED-TMBB annotations.
We compare our results using sets SetTransFold and

SetPRED-TMBB to the published results of the respective

methods. To compare our �-contact predictions to those of
transFold using the same predicted secondary structure, we

submitted the proteins of SetTransFold to the transFold server.
The transFold server predicts the secondary structure into four

classes: membrane facing strand residues (M), channel facing
strand residues (C), loops inside the periplasm (i) and extra-

cellular loops (o). The transFold server also predicts �-residue
contacts. These single character designations are used through-

out this work and in the output of our server. The PRED-
TMBB server predicts secondary structure into three classes:

TM, periplasmic and extra-cellular. For both datasets, we
expanded the two-class representation to three-class by

designating ‘�’ residues as either ‘M’ or ‘C’ based on visual
inspection of the structures. These representations (M, C, �)

were used to train a three-class predictor.

2.2 Cross-validation

Our predictors are trained and tested using leave-one-out cross-

validation (LOOCV) on SetTransFold and SetPRED-TMBB
independently. A single protein is held out of the set, a model is

built using the other 13, and a prediction is made on the held out
protein. This process is repeated for each protein in the set to

obtain the evaluation statistics in the results section. LOOCV
provides the best estimate of the generalization accuracy of a

predictor; however, with larger datasets LOOCV is not practical
because of the training time involved in building a model for

each member of the dataset. The same LOOCV procedure is
applied to template usage in the tertiary structure prediction

evaluation. The procedure is also commonly referred to as
‘Jackknife’.

2.3 Template construction

Our tertiary prediction evaluation is performed using
SetPRED-TMBB. We created template files by extracting the

backbone (N, C�, C) coordinates from the monomeric PDB
files. The curated (�, �) designations are used to label each

residue position in the template. The set contains 2 proteins
with 8 strands, 2 with 10 strands, 1 with 12 strands (1QD5),

4 with 16 strands, 2 with 18 strands and 3 with 22 strands. The
strand count of the predicted secondary structure is used to

select templates for modeling. If the strand count of 1QD5 is
correctly predicted, no templates would be available for

modeling because of the LOOCV procedure. To account for
this, we built a template from one additional 12 stranded

protein: 1TLY. Also, if a 14 stranded protein is predicted,
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no templates would be available; therefore, we built templates

from two 14 stranded TMBs: 1T16 and 2F1C. The manually

curated designations were not available for these three proteins,

so we used the TM segment ranges published in the Orientation

of Proteins in Membranes (OPM) database (Lomize et al.,

2006). The template set contains no 20 stranded proteins

because none are present in the PDB.

3 METHODS

3.1 Secondary structure prediction

3.1.1 Neural-network implementation The TMB secondary

structure predictor uses specialized neural network architecture called

a 1D Recursive Neural Network (1D-RNN). This network architecture

has been used for prediction of secondary structure, SSpro (Pollastri

et al., 2002), domain boundaries, DOMpro (Cheng et al., 2006b) and

disordered regions, DISpro (Cheng et al., 2005). As in the prior

applications, the input at each position to the neural network is the

profile of the sequences in the NR database aligned to the target

sequence using PSI-BLAST (Altschul et al., 1997). It has been the

experience of the authors that there is little chance of over-fitting the

models because of the weight sharing involved in the 1D-RNN

architecture. This feature of the architecture makes it appropriate for

the small datasets used in this work.

3.1.2 Two-class prediction (�, �) For two-class prediction the

1D-RNN is trained on the two-class 1D representation: (�) and (�).

When making a prediction, the output from the model is the predicted

probability of class membership to each class. The initial predicted

secondary structure, Sinitial, consists of the class with higher predicted

probability at each position. The first row in Figure 1 contains an

example of Sinitial for the TMB protein 1P4T. Since the secondary

structure of TMB proteins adhere to consistent construction rules, we

perform post-processing on the predicted probabilities to revise the

secondary structure prediction. The lengths of �-segments and the

different types of loop segments are constrained by minimum and

maximum values; however, the length of N and C-terminal (�)

segments are left unconstrained. Table S1 in the Supplementary

Material contains a summary of the specific values used for the

different segment types for each dataset. In the example in Figure 1, the

initial secondary structure prediction Sinitial for protein 1P4T violates

multiple constraints. To describe the post-processing strategy formally

we use the additional notations: N is the number of residues in a

sequence, S is any two-class secondary structure that does not violate

any of the model constraints, Si is the secondary structure at position i,

O is the matrix of predicted probabilities output from the 1D-RNN,

Oi,� and Oi,non-� are the predicted probabilities that Si is ‘�’ or ‘�’,

respectively. The post-processing objective function is the sum of

predicted probabilities for each position of S as defined in Equation (1).

sum ðSÞ ¼
XN

i¼1

Oi, Si
ð1Þ

Given sum(S) as the objective function, we need to find a S that

maximizes sum(S), whichwe denoteSmax. IfSinitial does not violate any of

the constraints, then no search is necessary as sum(Smax)� sum(Sinitial).

To find a Smax, we developed a dynamic-programming (DP) solution

that incorporates the parameters of the TMB construction rules. The

search guarantees to find a Smax, but the solution may not be unique.

Since, we have no objective way to discriminate between two equal

scoring predictions this issue is ignored, and the single optimal path

returned from the DP search is used as the final Smax.

We use the number of �-strands in Smax as the prediction of strand

count. During the search for Smax, the DP method saves the value of

sum(S) for each value of potential strand count. If the number of strands

‘�’ is provided as an additional constraint, the notation Smax, � indicates

an optimal S with � strands. This information can be useful for assessing

the confidence in the predicted secondary structure and corresponding

strand count. Table S2 in the Supplementary Material contains a

summary of the Smax,� results for the proteins in SetPRED-TMBB. For

1QJ8 the gap between Smax,8 (130.4) and the next highest sum Smax,10

(115.2) is 11.7%, whereas for 1A0S the gap between Smax,16 (340.9) and

the next highest sum Smax,18 (340.1) is only 0.2%. The larger the gap, the

more confident the predictor is in its strand count. For assessing our

system, this information is not useful, as the predictor will use the single

best Smax; however, this information could be valuable to a user whomay

decide to build tertiary models from multiple strand counts.

3.1.3 Three-class prediction (M, C, �) To predict the mem-

brane/channel pattern within the � segments, we trained a separate

neural network to predict three classes: M, C and other (�). The

architecture for the three-class predictor is the same 1D-RNN

architecture used for the two-class predictor. The output of the

network is the probability of class membership in each of the three

classes. For each � segment predicted in the final two-class prediction

Smax, the membrane-channel (M/C) pattern is predicted by choosing the

pattern with the higher predicted probability sum. For the example

protein, 1P4T, in Figure 1, the first � segment is predicted to be from

position 6 to 18. Equation (2) shows the calculation for the sum of

predicted probabilities for each pattern.

sum MC ¼ O6,M þO7,C þ � � � þO17,C þO18,M

sum CM ¼ O6,C þO7,M þ . . .þO17,M þO18,C

ð2Þ

Fig. 1. Predicted secondary structure for protein 1P4T. LOOCV prediction made using SetTransfold. Initial Pred 2 (Sinitial) is the initial two-class

prediction by the neural network. Pred 2 (Smax) is the two-class prediction after post-processing. Pred 4 is the four class prediction with loop types

inferred from Pred 2 (Smax) and membrane/channel pattern predicted by the three-class predictor. Annotation is the 1D sequence according to the

DSSP designations for strand boundaries and our assignment of ‘M’, ‘C’, ‘i’, ‘o’ and ‘.’ based on visual inspection.
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In this case sum_MC4sum_CM so the pattern beginning with ‘M’ is

forced over the � segment. From the three-class prediction, the (�)

segments are assigned as periplasmic (i) or extra-cellular (o) according

to the pattern observed in all TMB proteins. See Figure 1 for the final

four-class prediction of the example protein 1P4T in comparison to the

annotations.

3.2 b-contact prediction

Between two paired anti-parallel �-strands, only every other pair of

aligned residues is hydrogen bonded. Residue pairs that are aligned, but

not hydrogen bonded to one another, are still considered �-contacts.

The DSSP program is used to automatically identify �-contacts in

known protein structures. DSSP classifies �-contacts based on inter-

residue atomic distances and angles. TMBpro-CON is trained on true

�-contacts using a 2D Recursive Neural Network (2D-RNN) (Cheng

and Baldi, 2005). TMBpro-CON predicts �-contacts in TMB proteins by

first predicting the probability of pairing between all pairs of predicted

�-strand residues. For each pair of strands the pseudo-energy (i.e. the

sum of the individual predicted pairing probabilities) of all possible

strand–strand alignments is calculated. Then, TMBpro-CON utilizes the

following rules to restrict the search for acceptable pairings: consecutive

strands must pair in anti-parallel fashion; the terminal strands must pair

in anti-parallel fashion; the shear number must be between 0 and þ4

with respect to the strand count; membrane facing residues must pair

with other membrane facing residues and core facing residues must

pair with other core facing residues. A dynamic programming method is

used to find a set of contact predictions that maximizes the global

pseudo-energy while conforming to the construction rules.

3.3 Tertiary structure prediction

TMBpro-3D combines de novo and template-based methods to predict

tertiary structure, using a search energy composed of predicted

structural feature, physical interaction and statistical terms. The

conformational search is performed using simulated annealing with a

move set that utilizes whole protein templates and fragment assembly.

3.3.1 Search energy The search energy used in the conforma-

tional search is a linear combination of the following terms:

� Ebeta_pairs—favors formation of predicted �-contacts.

� Emc_pattern—favors predicted M/C pattern using template residue

membrane-channel values.

� Eglobular_pairwise—rewards favorable side-chain interactions between

predicted non-� positions (Zhang et al., 2003).

� Echain_break—favors close termini proximity at artificial chain break

sites.

� Ecentroid_repulsion—penalizes clashes between side-chain centers of

mass.

� Evdw_repulsion—penalizes steric clashes between all explicitly modeled

atoms using van der Waals radii.

The details of each individual energy term and the corresponding

weights are provided in the Supplementary Material.

3.3.2 Template usage The strand count (�) of the predicted

secondary structure is used to screen for potential templates. Each

template with a strand count matching � is used to generate an ensemble

of models. All models are then ranking according to their energy, and

the model with the best search energy is the final tertiary prediction. To

allow flexible alignment of each predicted �-segment to its correspond-

ing template segment, TMBpro creates artificial chain breaks at the

center of each non-� region, dividing the model into � loosely coupled

sub-models. The sub-models are allowed to move independently, but

their interactions are captured through the global energy function.

Four arrays of variables (M; T ;U;H ) are used to manage template

utilization during the conformational search (see Figs 2 and S2). The

model M is an array containing the xyz coordinates of the backbone

atoms (N, C�, C), indexed by the residue number i. The template T is a

similar array built for the template protein. The template usage U is an

array of binary variables indicating whether or not T is used to model

M at each residue position. Ui¼ 1 indicates that T is used to model Mi,

while Ui¼ 0 means Mi is modeled by fragment replacement using the

fragment library (Simons et al., 1997). The alignment shifts H is an

array of length �, where each position is the integer shift between model

and template segment relative to center–center alignment. The centers

of all model and template segments are aligned, corresponding to

H i¼ 0 for i¼ 1, . . . , �. From these center–center alignments, U is set to

1 at each predicted � position that aligns to a �-residue in the template,

and the rest of U is set to 0 (Figs 2 and S2). During the search phase the

values of H and U are modified to explore the use of T .

3.3.3 Move types The following move types are used in the

simulated annealing protocol to search the conformational space:

� Shift Single Segment by k: H i¼H iþ k

i ¼ segment index; k2Z and �max� k�max;

max¼ (length of segment i)/2;

� Shift m Consecutive Segments by k: H j¼H jþ k, for

j¼ i, . . . , iþm� 1

i¼ starting segment index; m2Z and 2�m� �;
k2Z and �max� k�max;

max¼ (length of shortest among m segments)/2;

� Adjust Single Segment Template Usage by k: Ul¼ � for

l¼ b, . . . , bþ k� 1

b¼ index of boundary residue (Ub 6¼Ubþ1);

�¼ 0 (contraction) or �¼ 1 (extension);

Fig. 2. Hypothetical template usage example for the first two TM

segments. M and T represent the model and template, respectively.

U controls where the template is used: ‘"’ indicates the position is

modeled from T (Ui¼ 1), whereas ‘f’ means the position is modeled by

fragment modeling (Ui¼ 0). The wavy vertical lines mark the chain

breaks. The center residue of each segment is boxed to help illustrate the

shifts. Initially the centers of segments are aligned (all H i¼ 0). In the

final model, the first segment is shifted 1 position to the left (H 1¼�1)

and the second segment is shifted 3 positions to the right (H 2¼ 3).
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k2Z and �max� k�max;

max¼number of residues to next boundary;

� Replace with Fragment: use fragment to model Mi, . . . ,Miþk

i¼ index of first residue to replace;

k2Z and 1� k� 9;

This move is applied only to regions where the template is not used

(Ui, . . . ,Uiþk¼ 0).

3.3.4 Conformational search The space of possible conforma-

tions is searched using simulated annealing with a linear cooling

schedule and the move-set described above. The search is performed in

two distinct phases.

Phase 1 focuses on modeling the TM-segments, while phase 2 focuses

on modeling the loops. In phase 1 all move types are used and the

weights for Eglobular_pairwise, Echain_break, Ecentroid_repulsion and Evdw_repulsion

are set to 0 to allow the search to quickly find a conformation that

satisfies the predicted strand constraints (low Ebeta_pairs and Emc_pattern).

At the end of phase 1 the values of H are locked, so that the model-

template alignments are no longer allowed to change. This reduces the

move set in phase 2 to only Adjusting Single Segment Template Usage

and Replace with Fragment. In addition, all energy terms are used in

phase 2. The search is run with different random seeds to generate an

ensemble of predicted models, equally utilizing the available templates.

The model with the lowest final search energy is returned as the tertiary

structure prediction.

4 RESULTS

To assess our secondary structure prediction, we compare it to

the published results of transFold (Waldispühl et al., 2006a) and
PRED-TMBB (Bagos et al., 2004a). To assess our �-contact
prediction we compare it to the published results of transFold,
and to the server output in order to make a comparison using
the same predicted secondary structure as input. To the best of

our knowledge, TMBpro-3D is the first publicly available
method to predict the structure of TMB proteins without

relying on sequence–sequence, sequence–profile or profile–
profile alignments for template usage; thus, we do not compare

out tertiary prediction results to previous work.

4.1 Secondary structure prediction results

As described previously, we developed a two-class (�,�)
secondary structure predictor specialized for TMB proteins.

Using the two-class predictions, we predict the three-class
(M, C, �) and infer four-class predictions (M, C, i, o). We

developed two separate secondary structure predictors using
the non-redundant datasets
SetTransfold and SetPRED-TMBB to make comparisons

with the related methods.

4.1.1 Secondary structure evaluation metrics To assess
secondary structure prediction performance we use the follow-

ing per-residue metrics: the two-class accuracy (Q2), three-class
(M, C, �) accuracy (Q3), Mathews correlation coefficient

(MCC) (Baldi et al., 2000), and segment overlap measure (SOV)
(Zemla et al., 1999).We include the SOV measure for

completeness, but no SOV results were provided in the studies
we compare to. In addition to these common measures, we use
additional measures from previous work for the sake of

comparison. For comparison to transFold, we also include the

per-segment recall (sensitivity) Q%obs
� and precision Q%pred

� ,

with correct prediction defined as an observed �-strand
intersecting exactly one predicted �-strand, and vice versa

(Waldispuhl et al., 2006a). The per-segment measures for

comparison to PRED-TMBB include the number of true

positives (TP), the number of false negatives (FN) and the

number of false positives (FP). In addition, we include the

number of correctly predicted topologies (TOP), that is when

all strands and loops have been predicted correctly according to

Bagos et al. (2004a).

4.1.2 Results using SetTransfold Table 1 contains a sum-

mary of TMBpro-SS secondary structure prediction results

compared to transFold. We use LOOCV on SetTransfold to

assess our method and compare it to transFold. TMBpro-SS

outperforms transFold significantly using theQ2 (77.84–69.91%)

and MCC (0.538–0.380) measures. TMBpro-SS performs

slightly better than transFold, according to the per-segment

measures Q%obs
� and Q%pred

� .

4.1.3 Results using SetPRED-TMBB Table 2 contains a
summary of TMBpro-SS secondary structure prediction results

compared to PRED-TMBB. We use the same LOOCV

(Jackknife) procedure as the authors of the PRED-TMBB

method, on the same set of proteins, to make the comparison

as objective as possible. Of the 214 annotated �-strands
PRED-TMBB correctly predicts 203, while TMBpro-SS

correctly predicts 204. PRED-TMBB makes 13 false positive

predictions (FP), while TMBpro-SS only makes 6. Using the

TOP measure of correct topology prediction PRED-TMBB

correctly predicts 8 topologies, while TMBpro-SS succeeds

on 11. TMBpro-SS also outperforms PRED-TMBB according

to the Q2 (88.3–84.2%) and MCC (0.751–0.720) measures.

Table 1. TMBpro-SS compared to transFold

Method Q2 MCC SOV Q3 Q%obs
� Q%pred

�

transFold 69.9 0.380 – 58.5 94.9 85.2

TMBpro-SS 77.8 0.538 0.800 71.5 97.2 88.2

TMBpro-SS is evaluated using LOOCV on the SetTransfold dataset and

compared to transFold. Per-residue measures are Q2: two-class accuracy,

MCC: Mathews correlation coefficient, SOV: segment overlap measure and

Q3: three-class accuracy. Per-segment measures are Q%obs
� : recall (sensitivity),

Q%pred
� : precision.

Table 2. TMBpro-SS compared to PRED-TMBB

Method Q2 MCC SOV Q3 TP FP FN TOP

PRED-TMBB 84.2 0.720 – – 203 13 11 8

TMBpro-SS 88.3 0.751 91.3 88.0 204 6 10 11

TMBpro-SS is evaluated using LOOCV on the SetPRED-TMBB dataset and

compared to PRED-TMBB. Per-residue measures are Q2: two-class accuracy,

MCC: Mathews correlation coefficient, SOV: segment overlap measure and Q3:

three-class accuracy. Per-segment measures are TP: true positives, FP: false

positives and FN: false negatives. TOP: correct topology.
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When comparing TMBpro-SS to itself between datasets, it has
significantly higher Q2, Q3, MCC and SOV when using

SetPRED-TMBB (see Tables 1 and 2). It is unclear how

much of this difference is due to the five proteins that differ

between the sets, and how much is due to the different types of

annotation of the training data. The Q2, Q3, MCC and SOV

results for individual proteins are displayed with the detailed

tertiary prediction results in Table 4.

4.2 b-Contact prediction results

The input to TMBpro-CON is the amino acid sequence and

a two-class secondary structure. Using SetTransfold, we

performed �-contact prediction with three different sets of

two-class secondary structure: (1) predicted by transFold server,

(2) predicted by TMBpro-SS and (3) DSSP designations.
We compare our results using (1) to the �-contacts predicted

by the transFold server. We compare our results using (2) to the

transFold published results. Using SetPRED-TMBB, we

performed �-contact prediction with two sets of two-class

secondary structure: predicted by TMBpro-SS and hand

curated annotations from Bagos et al. (2004a). No comparison

to other work is made using SetPRED-TMBB since PRED-
TMBB does not predict �-contacts.

4.2.1 �-Contact evaluation metrics For evaluation of
�-contact prediction, the authors of transFold introduce the

concept of a compatible pair of residues to allow contact

predictions that are nearly correct to be counted. Consider a

pair (i, j) to be a true �-residue pairing. The contact pairs (i, j)

and (m, n) are considered to be compatible if, for a given integer
�, (i, j)¼ (m� �, n� �). In their work they use a value of �¼ 2

for evaluation. For our assessment we use �¼ 2 and �¼ 0,

where only exact pairing predictions are counted. The measures

we use for assessment are precision and recall. The precision is

calculated by (number of correct �-contact predictions/total

number of �-contact predictions) and recall by (number of

correct �-contact predictions/total number of true �-contacts).

4.2.2 Results using SetTransfold A summary of �-contact
prediction results for both protein sets and all secondary

structure sets is available in Table 3. Using the same secondary

structure as input (the predicted secondary structure from the

transFold server) TMBpro-CON performs slightly better than

the transFold server by all measures. Using the predicted

secondary structure from TMBpro-SS as input, the TMBpro-
CON prediction results are significantly better than transFold

server results and published results according to all measures.

Using the DSSP assigned secondary structure as input,

TMBpro-CON predicts exact �-contacts with precision 0.478

and recall 0.520. These results demonstrate the upper bound in

�-contact prediction accuracy of TMBpro-CON given improve-

ments in secondary structure prediction only.

4.2.3 Results using SetPRED-TMBB Taking the predicted
secondary structure from TMBpro-SS trained on SetPRED-

TMBB as input, TMBpro-CON predicts exact �-contacts with
precision 0.414 and recall 0.407. These values are significantly

higher than the corresponding prediction using SetTransfold

(see Table 3). This difference can be accounted for by the more

accurate secondary structure predictions for SetPRED-TMBB.
The �-contact recall results for the individual proteins are

shown in the tertiary results Table 4.

4.3 Tertiary structure prediction results

Here, we evaluate the tertiary structure predictions of TMBpro-

3D for SetPRED-TMBB using secondary structure and
�-contacts predicted by TMBpro. We chose SetPRED-TMBB

rather than SetTransfold for tertiary prediction experiments
because of the stronger secondary structure and �-contact
prediction results. Only the model with the lowest search energy
is evaluated.

4.3.1 Tertiary structure evaluation metrics The two mea-

sures we use to evaluate tertiary predictions are root-mean-
square deviation (RMSD) and global distance test total score

(GDT_TS) reference for GDT_TS measure (Zemla, 2003). The
latter has been used as the primary numeric measure in recent

critical assessment of methods of protein structure prediction
(CASP) experiments (Moult et al., 2005). The TM notation is

used as a subscript to indicate that the measure is calculated on
only the TM segments of the true structure compared to the

model.

4.3.2 Prediction results The tertiary structure prediction
results for each protein in SetPRED-TMBB are displayed in

Table 4. The best prediction, in terms of the GDT_TS and
RMSD on the whole structure is made on the protein with the

second highest �-contact recall: 1QJP. The �-contact recall is
0.65, the GDT_TS is 57.3 and RMSD is 4.3 Å. The GDT_TSTM
is 68.3 and RMSDTM is 3.0 Å. The next best whole structure
predictions are for proteins 1QJ8 (52.0, 5.5 Å), 1PRN (50.0,

7.1 Å) and 1E54 (49.3, 7.7 Å). The Supplementary Material

contains a superposition file (1QJ8_pred.pdb) and an image
(Fig. S1) showing the predicted structure for 1QJ8 aligned to

the PDB structure. For several proteins the GDT_TSTM results
are strong. For proteins 1QJ8, 1QJP, 1PRN, 1I78, 1E54,

2OMF and 1FEP the GDT_TSTM is greater than 60.0. These
predictions correspond to correct topology predictions and

high �-contact recall when compared to the other predictions.

Table 3. �-contact prediction results

Dataset/Method Precision

�¼ 0

Recall

�¼ 0

Precision

�¼ 2

Recall

�¼ 2

SetTransfold

transFold – published – – 0.350 0.450

transFold – server results 0.084 0.105 0.434 0.512

TMBpro-CON (transFold) 0.110 0.128 0.445 0.532

TMBpro-CON (TMBpro-SS) 0.206 0.215 0.648 0.671

TMBpro-CON (DSSP) 0.478 0.520 0.960 0.960

SetPRED-TMBB

TMBpro-CON (TMBpro-SS) 0.414 0.407 0.851 0.819

TMBpro-CON (annotation) 0.484 0.529 0.967 0.996

Summary of �-contact prediction results. The secondary structure method used

by TMBpro-CON is in parentheses. For �¼ 0 only exact pairs are counted, for

�¼ 2 pairings within �2 are counted as correct. True �-contacts are determined

by the DSSP program.
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The significantly lower GDT_TS and higher RMSD scores on

the whole structures reflect the difficulty of modeling long loop

regions and core domains folded inside the larger proteins.
The worst whole structure and TM segment predictions are

made on proteins 1A0S and 2MPR, both of which have true

strand counts of 18, but are modeled using 16-stranded

templates because of incorrect secondary structure topology

predictions. Additionally, the locations of multiple strands in

the 2POR prediction are incorrect resulting in an incorrect

topology according to the TOP measure. The worst whole

structure and TM segment prediction for a protein with correct

topology prediction was made on the 10-stranded protein

1K24. The topology is correct using the TOP measure;

however, the locations of the sixth and seventh strands are

off by seven residues. Using a slightly stricter standard for

topology assessment, this prediction would be considered an

incorrect topology. From these results it is clear that the correct

topology is necessary to build a reasonable tertiary model.

4.3.3 Self-consistency results To evaluate the self-
consistency of TMBpro, we provided the curated secondary

structure and true �-contacts as input to the program. The

performance was assessed both allowing and disallowing the

inclusion of the native template among the available templates,

and the results are displayed in the rightmost section of Table 4.

When the native template is included, TMBpro always recovers

the true structure (see the last column in Table 4). When the

native template is not included, the RMSDTM results range

from 1.5 to 4.5 Å. For 12 of 14 predictions, the RMSDTM is

52.8 Å. The only two exceptions are proteins 2FCP, with an

RMSDTM of 3.5 Å, and 1QD5, with an RMSDTM of 4.5 Å. At

723 residues 2FCP is one of the longest proteins in the set, so a

slightly higher error is not surprising. 1QD5 is only 269

residues, but contains an irregular bulge in the first strand that

is not present in its only available template (1TLY).

5 CONCLUSION

TMB proteins have clear biological and medical relevance. Due

to their importance and the difficulty of experimentally

determining their structures, accurate tertiary structure predic-

tion of TMB proteins is an important task for the protein

structure prediction community. Traditional homology model-

ing methods will perform well if the target protein is similar

enough to a solved protein to create a quality alignment;

however, for the vast majority of putative TMB proteins

traditional homology modeling will fail. The construction rules

TMB proteins follow provide a greatly reduced search space

compared to the globular protein structure prediction problem.

In this work, we demonstrated a methodology for predicting

secondary structure, �-contacts and tertiary structure of

TMB proteins. The tertiary structure predictor does not

rely on sequence similarity between target and template.

Table 4. TMBpro-3D tertiary structure prediction results

Secondary

structurepredictionresults

Tertiary prediction results

(predicted SS and �-contacts)
Self-consistency results

(curated SS and �-contacts)

P
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ID
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3

�
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�
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D
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D
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R
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D
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G
D

�
T
S
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D

G
D

�
T
S
T
M

R
M
S
D

T
M

R
M
S
D

T
M

S
el
fT
em

p
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te

1QJ8 148 8 93.2 0.86 97.3 93.2 0.64 52.0 5.5 69.9 3.6 58.8 5.2 76.5 2.3 0.0

1QJP 171 8 89.5 0.78 95.0 89.5 0.65 57.3 4.3 68.3 3.0 54.2 4.9 63.7 2.8 0.0

1K24 253 10 80.2 0.59 86.7 80.2 0.18 32.3 12.9 50.0 10.2 55.7 4.8 76.9 1.9 0.0

1QD5 269 12 84.4 0.68 95.2 79.6 0.37 25.5 11.7 37.1 8.3 41.1 8.6 62.3 4.5 0.0

1PRN 289 16 90.3 0.81 91.9 89.6 0.46 50.0 7.1 68.0 5.7 55.6 5.4 76.5 2.0 0.0

1I78 297 10 95.3 0.89 99.7 95.3 0.66 35.9 14.8 66.1 4.0 41.2 14.5 79.3 1.7 0.0

2POR 301 16 78.7 0.57 70.6 77.1 0.28 29.7 13.4 43.8 11.4 58.7 5.4 81.9 1.5 0.0

1E54 332 16 86.7 0.73 95.5 85.8 0.48 49.3 7.7 70.9 4.4 55.5 7.1 79.5 2.7 0.0

2OMF 340 16 92.4 0.84 97.7 90.6 0.31 41.8 8.6 66.3 4.9 54.5 5.9 81.8 1.8 0.0

1A0S 413 16 (18) 75.3 0.5 65.2 74.3 0.17 21.9 16.8 33.5 14.1 66.9 5.1 89.8 1.7 0.0

2MPR 427 16 (18) 77.5 0.53 76.7 76.6 0.41 29.4 13.7 40.2 12.3 67.9 7.7 92.3 1.8 0.0

2FCP 723 22 93.9 0.85 98.7 93.9 0.39 25.9 15.5 48.8 6.0 41.5 13.9 74.9 3.5 0.0

1FEP 724 22 91.7 0.81 97.4 91.7 0.54 38.7 11.0 60.2 4.4 48.0 10.0 78.7 2.7 0.0

1KMO 741 22 95.1 0.88 99.2 95.1 0.34 31.1 9.1 53.3 5.3 54.6 8.7 78.9 2.1 0.0

TM count: number of transmembrane segments in secondary structure predicted by TMBpro-SS. If the prediction does not match the true number of segments, the true

number is shown in parentheses. Q2: two-class accuracy. MCC: Mathews correlation coefficient. SOV: segment overlap measure (Zemla et al., 1999). Q3: three-class

accuracy. �-recall �¼ 0: recall of exact hydrogen bonded �-residue pairs. GDT_TS: global distance test total score. RMSD: root-mean-squared deviation. The TM

notation indicates the assessment was only performed on the portions of the protein annotated as transmembrane. The results in section ‘tertiary prediction results’ are

generated using predicted secondary structure and �-contacts. The results in section ‘self-consistency results’ are generated using the manually curated secondary structure

of SetPRED-TMBB and true �-contacts as determined by DSSP. The final column in the self-consistency section, RMSDTMSelfTemplate, shows results when TMBpro is

allowed to use all available templates (including the self template), all other results are generated using LOOCV template selection.
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The performance of TMBpro compares favorably to other
publicly available predictors. The TMBpro server, trained on
all 14 proteins in SetPRED-TMBB, is publicly available at:
http://www.igb.uci.edu/servers/psss.html.
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